Management of Hepatitis C Infection: Promises and Challenges Ahead

Shyam Kottilil M.D., Ph.D.
Laboratory of Immunoregulation
National Institute of Allergy and Infectious Diseases
National Institutes of Health
Department of Health and Human Services
Bethesda, MD
Overview

The current landscape of hepatitis C in the United States

Newly approved directly acting antiviral agents (DAAs) in different patient populations

Future therapeutic options beyond 2014

The Washington DC HCV experience (DCPFAP)
Hepatitis C: Epidemiology

- Estimated 170 million persons with HCV infection worldwide
- 3-4 million newly infected each year worldwide

Prevalence of infection:
- > 10%
- 2.5–10%
- 1–2.5%

Source: ©WHO, 2008. All rights reserved.
Deaths From Hepatitis C Have Surpassed Deaths From HIV Infection

Age-adjusted Mortality Rates of HIV and Hepatitis C: United States, 1999-2010

Projected Cases of Hepatocellular Carcinoma and Decompensated Cirrhosis Due to HCV

- Decompensated cirrhosis
 - Peak incidence: 145,000 cases/year in 2020

- Hepatocellular cancer
 - Peak incidence: 14,000 cases/year in 2019

Causes of Chronic Liver Disease Among Alaskan Indian Population

HCV Is Largely Underdiagnosed In The U.S

Number of infected persons vs number aware of their infection (diagnosed)

HIV: 21% Undiagnosed, 89% Diagnosed
HBV: 65% Undiagnosed, 35% Diagnosed
HCV: 75% Undiagnosed, 25% Diagnosed

Institute of medicine: Hepatitis and Liver Cancer: A national strategy for prevention and control 2010
CDC HCV Screening Recommendations

CDC now recommends

• Age based testing: All adults born during 1945 – 1965 should have a one-time antibody testing without prior ascertainment of risk
• Referral to care
• Alcohol screening and intervention

If tested and treated,
-> 120,000 deaths averted
- > $2.5 billion medical costs averted

MMWR Aug 17, 2012; Rein D et al, Ann Int med 2012: 156
Primary concerns pertaining to HCV screening

<table>
<thead>
<tr>
<th>Concern</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of treatment for hepatitis C</td>
<td>54.2%</td>
</tr>
<tr>
<td>Referral facilities for HCV patients</td>
<td>45.8%</td>
</tr>
<tr>
<td>Treatment options for HCV patients</td>
<td>41.7%</td>
</tr>
<tr>
<td>Cost of increasing HCV screening</td>
<td>39.6%</td>
</tr>
<tr>
<td>Clinical training on HCV</td>
<td>37.5%</td>
</tr>
<tr>
<td>Implementing HCV screening</td>
<td>31.3%</td>
</tr>
<tr>
<td>Rationale of CDC recommendations for age-based screening</td>
<td>14.6%</td>
</tr>
</tbody>
</table>

Annual Hospitalization Rates as a Result of Hepatitis

Byrd KK et al. Public Health Reports, 2011, 126: 816-825
Annual Hospitalizations due to Hepatitis C by Age Group

Annual Hospitalizations due to Hepatitis C by Region

Patients with Advanced Liver Disease Progress Rapidly

HCV Infection in the U.S: Estimated Rates of Detection, Referral to Care, and Treatment

- Total U.S. Population with chronic HCV infection: 3,500,000
- HCV Detected: 50%
- Referred to Care: 32-38%
- HCV RNA test: 20-23%
- Underwent liver biopsy: 12-18%
- Treated: 7-11%
- Successfully Treated: 5-6%

SVR and Reduced Risk of All-Cause Mortality - U.S. Veterans Study

21,839 treated patients in VA Clinical Case registry; 16,864 with f/u
- high rates of co-morbidities (DM, HTN, ETOH, CAD)
SVR: G1: 35%, G2: 72%, G3 62%

HCV Genotype 1

$P \text{ (log-rank) } < 0.0001$

Treatment of HCV
Advances in Chronic Hepatitis C Treatment

Adapted from the US Food and Drug Administration, Antiviral Drugs Advisory Committee Meeting, 2011.
The Promise of Interferon-free DAA Therapy

Specific drugs
- Boceprevir
- Telaprevir
- Faldaprevir
- Asunaprevir
- Daclatasvir
- Simeprevir
- Sofosbuvir
- ABT-333
- ABT-450/r
- Ledipasvir
- ABT-267

Non-specific drugs
- PEG-IFNα
- Ribavirin
- NS3/4A PI
- Nucleoside NS5B inhibitor
- NS5A inhibitor
- Non-Nuc NS5B inhibitor
- Non-specific agent

HCV Life Cycle and DAA Targets

Telaprevir
Boceprevir

Simeprevir

NS3/4 protease inhibitors

ER lumen
Translation and polyprotein processing

Cyclophilin inhibitors
Transport and release

Virion assembly

LD
NS5B polymerase inhibitors

RNA replication

NS5A inhibitors*
*Role in HCV lifecycle not well defined

Hadigan C and Kottilil S. JAMA 2011
Primary concerns pertaining to HCV treatment

<table>
<thead>
<tr>
<th>Reason</th>
<th>2003 (%)</th>
<th>2007 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inability to attend scheduled clinic appointments</td>
<td>32 (36%)</td>
<td>24 (16%)</td>
</tr>
<tr>
<td>Alcohol or drug abuse within 6 months</td>
<td>16 (17%)</td>
<td>29 (22%)</td>
</tr>
<tr>
<td>Patient decision to defer treatment</td>
<td>16 (17%)</td>
<td>36 (25%)</td>
</tr>
<tr>
<td>Liver biopsy without fibrosis or normal ALT</td>
<td>8 (8%)</td>
<td>4 (3%)</td>
</tr>
<tr>
<td>Uncontrolled psychiatric condition</td>
<td>7 (7%)(^a)</td>
<td>9 (6%)(^b)</td>
</tr>
<tr>
<td>Concurrent medical condition precluding treatment</td>
<td>6 (6%)(^c)</td>
<td>12 (8%)(^d)</td>
</tr>
<tr>
<td>Decompensated cirrhosis</td>
<td>3 (3%)</td>
<td>7 (5%)</td>
</tr>
<tr>
<td>Age >65 years</td>
<td>2 (2%)</td>
<td>2 (1%)</td>
</tr>
<tr>
<td>Considering or planning treatment</td>
<td>0</td>
<td>7 (5%)</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>2 (1%)</td>
</tr>
<tr>
<td>Total</td>
<td>90</td>
<td>132</td>
</tr>
</tbody>
</table>

Livingston SE et al. *Int J Circumpolar Health* 2012, 71: 18445
Future HCV Treatment Strategies

Phase III Treatment-naive

- **Peg-IFNa-containing regimens**
 - 2nd Gen. PI Triple
 - Faldaprevir, Simeprevir
 - NUC Triple
 - Sofosbuvir HCV type 1 and 4-6

Next wave of triple/quadruple regimens

- Asunaprevir (PI)
- MK5172 (PI)
- MK7009 (PI)
- Daclatasvir (NS5A)
- GS8558 (NS5A)
- Daclatasvir + Asunaprevir
- GS5885 + GS9451

Phase III IFN-free regimens

- NUC + RBV
 - Sofosbuvir HCV type 2 and 3

Next wave of all-oral regimens

- ABT-450/r (PI/r)+ABT-267 (NS5A)+ABT-333 (NNUC)+RBV
- Faldaprevir + BI 207127 + RBV
- Daclatasvir (NS5A) + Sofosbuvir (NUC) ± RBV
- GS5885 (NS5A) + Sofosbuvir (NUC) ± RBV
- GS9669 (Non-NUC) + Sofosbuvir (NUC) RBV
- Asunaprevir (PI) + Daclatasvir (NS5A) + BMS791325

PI = Protease Inhibitor, NUC = nucleosidic polymerase (NS5B) inhibitor, NS5A = NS5A Inhibitor, PI/r ritonavir boosted PI, RBV = Ribavirin
Summary

- New standard of care for HCV GT-1
 - Simeprevir / PegIFN/RBV : GT-1
 - Sofosbuvir/RBV: GT-2, 3, ?1 (+ PegIFN/RBV: GT-1)
- Future therapies likely IFN free +/- RBV
- Important advances for treatment in prior difficult to treat populations (cirrhosis, HIV/HCV, transplant)
- Identification, retention in care and delivery of new DAA therapies in the U.S and globally is the next step.
- Pathway going forward either:
 - Simple, once daily, 1-2 pills, pangenotypic regimens
 - OR
 - Individualized considering genotype, comorbidities, DDI, pre-existing mutations, fibrosis etc
NIH - District Of Columbia Partnership For AIDS Progress (DCPFAP)

Federal – local partnership
Washington DC: HCV prevalence ~1.8%
– Over 13,000 chronic HCV cases
Urban model for HIV and hepatitis management and translational research

HCV Prevalence

Location of NIH-supported Clinics

NIH Clinical Center
Key Points

- First Interferon-free regimen in the USA
- First Interferon-free regimen for difficult to treat patient population
- Established biological correlates for relapse for sofosbuvir and ribavirin
- First interferon and ribavirin free regimen for HIV/HCV coinfected subjects
- First Interferon and ribavirin free regimen for HCV genotype 4 patients
- First study to retreat previous relapsers of sofosbuvir containing regimen
- First study to demonstrate you can shorten duration of therapy by adding DAAs
Strategy for HCV Cure

Emerging HCV Therapy

- High cure rate
- All oral therapy
- Low pill burden
- Shorter course
- Fewer side effects

- Durability of response
- Reinfection
- Resistance
- Screening
- Linkage to care
- Economics
Acknowledgments

NIAID/LIR:
Shyam Kotttilil, MD, PhD
Anita Kohli, MD
Eric Meissner MD, PhD
Lisa Barrett, MD, PhD
Michael Sneller, MD
Michael A. Polis, MD
Henry Masur, MD
Anthony S. Fauci, MD
Laura Heytens, RN
Amy Nelson, RN
Richard Kwan, PA-C
Yu-jin Lee, BA
Kerry Townsend BA
Miriam Marti BA
Xiaozhen Zhang, PhD

NIH DC-PFAP
Rachel Newman R.N.
Alice Rosenberg R.N.
Colleen Kotb R.N.
Chloe Gross R.N.
Angie Price CRNP
Michelle Espinosa

NIH Collaborating Investigators:
Anthony Suffredini, MD, CCMD
Brad Wood, MD, and colleagues, Interventional Radiology
David E. Kleiner, MD, PhD, Laboratory of Pathology/NCI
Michael Proschan, PhD, BRB/DCR

DC collaborators
Geb Teferi M.D (Unity health care)
Veronica Jenkins M.D (FMCS)
Debra Benator M.D (VAMC)

Patients who participated in the trial

CCMD, CC, NIH
Henry Masur MD

Univ. of Maryland
Robert Redfield M.D.
Rohit Talwani M.D.